

CERTIFICATE

Certified Passive House Component

Valid until 31st December 2026

Passive House Institute
Dr. Wolfgang Feist
64283 Darmstadt
Germany

Category: **Air handling unit with heat recovery**

Manufacturer: **Helios Ventilatoren GmbH & Co KG**

Germany

Product name: **Ventilation unit series**

AIR1 XC

Specification: Airflow rate > 600 m³/h

Heat exchanger: Recuperative

This certificate was awarded based on the product meeting the following main criteria

Heat recovery rate η_{HR} \geq 75 %

Specific electric power $P_{el,spec}$ \leq 0.45 Wh/m³

Leakage $<$ 3 %

Performance number \geq 10

Comfort Supply air temperature \geq 16.5 °C
at outdoor air temperature of -10 °C ²⁾

Airflow range

170-1650 m³/h

at an external pressure of

190-255 Pa ¹⁾

Requirements non-residential buildings
(Therefore also applicable for residential buildings)

Heat recovery rate

$\eta_{HR} \geq 80 \%$

Specific electric power

$P_{el,spec} \leq 0.45 \text{ Wh/m}^3$

Performance number

> 9 ³⁾

¹⁾ The pressure drop of filters is covered in the listed external pressure. Additional components decrease the available pressure difference accordingly.

²⁾ With active internal frost protection strategy.

³⁾ The recommended value of 10.0 was not achieved at some models.

cool, temperate climate

**CERTIFIED
COMPONENT**

Passive House Institute

Component ID	Unit model	Testing requirements	Airflow range		External pressure Pa	Actual available external pressure ¹⁾ Pa	Specific electric power Wh/m ³	Heat recovery rate %	Performance number
			Min m ³ /h	Max m ³ /h					
2222vl03	Helios AIR1 XC 500	Non-residential	170	510	190	139	0.45	80	9.1
2223vl03	Helios AIR1 XC 700	Non-residential	200	700	200	139	0.42	81	9.9
2225vl03	Helios AIR1 XC 1400	Non-residential	330	900	215	169	0.43	82	9.7
2226vl03	Helios AIR1 XC 2200	Non-residential	700	1650	255	188	0.43	82	9.8
2227vl03	Helios AIR1 XC 3200	Non-residential	700	1400	243	221	0.45	86	9.9

Table 1: Certified values for each unit model.

¹⁾ Pressure drop of filters were taken into account.

Passive House comfort criterion

At an outdoor air temperature of - 10 °C a supply air temperatur of 16.5 °C is achieved with activated internal electric preheater. The criterion is therefore met.

Efficiency criterion (heat recovery rate)

The effective heat recovery rate is measured at a test facility using balanced mass flows of the outdoor and exhaust air. The boundary conditions for the measurement are documented in the testing procedure.

$$\eta_{HR} = \frac{(\theta_{ETA} - \theta_{EHA}) + \frac{P_{el}}{\dot{m} \cdot c_p}}{(\theta_{ETA} - \theta_{ODA})}$$

With

- η_{HR} Heat recovery rate in %
- θ_{ETA} Extract air temperature in °C
- θ_{EHA} Exhaust air temperature in °C
- θ_{ODA} Outdoor air temperature in °C
- P_{el} Electric power in W
- \dot{m} Mass flow in kg/h
- c_p Specific heat capacity in Wh/(kg.K)

- The heat recovery rates for each model of the unit are listed in Table 1.

Airflow range and external pressure difference

The operational range of the device results from the efficiency criterion (see below). As per the certification criteria for ventilation units $> 600 \text{ m}^3/\text{h}$ the applicable pressure differences vary with the nominal range of operation (as declared by the producer) and the application (residential or non-residential building).

The external pressure difference includes all pressure losses of the ventilation system caused by components apart from the tested unit (consisting of casing, heat exchanger and fans). If filters are installed inside of the unit, their pressure losses are to be reduced accordingly. The average filter pressure drop of an operational filter is assumed to be 30% higher than that of the clean filter.

- The airflow ranges and available external pressures for each model of the unit are listed in Table 1.

Efficiency criterion (electric power)

The overall electrical power consumption of the device including controllers was measured at the test facility as per the requirements for non-residential buildings at an external pressure difference of 190-255 Pa.

- The specific electric powers for each model of the unit are listed in Table 1.

Performance number

Based on the measured values for the calculation of heat recovery efficiency and power consumption and on the climatic data of central Europe (Gt: 84 kKh, heating time: 5400 h/a), an average performance number at the airflow range was determined.

- The performance numbers for each model of the unit are listed in Table 1.

Leakage

The airtightness of the unit is tested for under pressure and over pressure before the thermodynamic test is conducted. As per the certification criteria the leakage airflows must not exceed 3 % of the average airflow of the device's operating range.

- These appliances meet the airtightness requirements.

Settings and airflow balance

It must be possible to adjust the balance of airflows at the unit itself (either between the exhaust and the outdoor airflows or between the supply and the extract airflows, if the unit is respectively placed inside or outside of the insulated thermal envelope of the building). Available operation modes are explained in detail in the operation manual.

- Balancing of the airflow rates of the unit is possible.
 - ✓ The airflow volumes can be held steady automatically (operation mode constant flow)
- The standby power consumption of these devices can reach up to 15.5 W. The target value of 1 W was exceeded. The device should be equipped with an additional external switch so that it can be disconnected from the mains, if required.
- After a power failure, according to manufacturer information, the device will automatically resume operation.

Acoustical testing

A ventilation unit > 600 m³/h is assumed to be operated in an installation room, for which sound limits are defined in the applicable regulations. The total acoustic power levels were determined by producer for each model of the units at an upper limit of the airflow range. The provided values were not verified in frame of this the certification.

Unit model	Testing requirements	Airflow range		Casing	Total acoustic power level			
		Min	Max		ODA	SUP	Duct	ETA
		m ³ /h	m ³ /h	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Helios AIR1 XC 500	Non-residential	170	510	47	59	75	59	73
Helios AIR1 XC 700	Non-residential	200	700	44	56	71	56	69
Helios AIR1 XC 1400	Non-residential	330	900	45	55	69	55	68
Helios AIR1 XC 2200	Non-residential	700	1650	49	60	75	60	73
Helios AIR1 XC 3200	Non-residential	700	1400	47	56	71	56	70

Tabele 2: Acoustic power levels at an upper limit of the airflow range.

- For complying with the required sound level in the supply air and extract air rooms, dimensioning of a suitable silencer is required for the specific project on the basis of the measured sound level.

Indoor air quality

Instructions for changing of the air filters are documented in the operation manual. This device is equipped with following filter qualities:

Outdoor air filter	Extract air filter
ISO ePM1 50%	ISO ePM10 50%

If the device is not operated during summer, the filter should be replaced before the next operation. The producer of the device has to ensure that based on the latest findings, room air hygiene can be maintained by means of integrated or obligatory components.

For the operation of ventilation systems a strategy for avoiding permanent moisture penetration of the outdoor air filter needs to be considered. The strategies are mentioned in the full report and can be implemented through installation of either an additional component of the ventilation device or on the ventilation site system.

Frost protection

Appropriate measures should be taken to prevent the heat exchanger and optional downstream hydraulic heater coil from getting damaged by frost during extreme winter temperatures (-15°C). It must be ensured that the unit's ventilation performance is not affected during frost protection cycles.

- Frost protection of the heat exchanger:
 - ✓ In order to protect the heat exchanger from freezing, the devices are equipped with an internal electric preheater by default.
- Frost protection of downstream hydraulic heater coils:
 - ✓ In order to protect a downstream hydraulic heater coil, the device switches off as soon as the supply air temperature reaches 5°C . An error message appears on the display.

It should be noted that, due to free circulation, cold air can also lead to freezing – even when the fans are stationary. This can only be ruled out if the air duct is closed (by means of a shut-off flap).

Bypass of the heat recovery

The units are equipped with a summer bypass, which is operated automatically according to the outdoor and extract air temperature. The effectiveness of bypass for night cooling of buildings has not been investigated within the scope of this testing.